مرکزی صفحہ
Machine Learning Methods in the Environmental Sciences (Neural Networks and Kernels) || References
Machine Learning Methods in the Environmental Sciences (Neural Networks and Kernels) || References
Hsieh, William W.آپ کو یہ کتاب کتنی پسند ہے؟
فائل کی کوالٹی کیا ہے؟
کوالٹی کا جائزہ لینے کے لیے کتاب ڈاؤن لوڈ کریں
فائل کی کوالٹی کیا ہے؟
جلد:
10.1017/CB
سال:
2009
زبان:
english
DOI:
10.1017/CBO9780511627217.015
فائل:
PDF, 173 KB
آپ کے ٹیگز:
فائل آپ کے ای میل ایڈریس پر بھیجی جائگی۔ اسے موصول ہونے میں 5 منٹ تک کا وقت لگ سکتا ہے۔.
فائل آپ کے Kindle اکاؤنٹ پر بھیجی جائگی۔ اسے موصول ہونے میں 5 منٹ تک کا وقت لگ سکتا ہے۔.
نوٹ کریں : آپ کو ہر کتاب کی تصدیق کرنی ہوگی جسے آپ اپنے Kindle میں بھیجنا چاہیں۔ Amazon Kindle سے تصدیقی ای میل کے لیے اپنا میل باکس چیک کریں۔
نوٹ کریں : آپ کو ہر کتاب کی تصدیق کرنی ہوگی جسے آپ اپنے Kindle میں بھیجنا چاہیں۔ Amazon Kindle سے تصدیقی ای میل کے لیے اپنا میل باکس چیک کریں۔
Conversion to is in progress
Conversion to is failed
0 comments
آپ کتاب کا معائنہ کر سکتے ہیں اور اپنے تجربات شیئر کرسکتے ہیں۔ دوسرے قارئین کتابوں کے بارے میں آپ کی رائے میں ہمیشہ دلچسپی رکھیں گے۔ چاہے آپ کو کتاب پسند ہے یا نہیں ، اگر آپ اپنے دیانتدار اور تفصیلی خیالات دیںگے تو لوگوں کو نئی کتابیں ملیںگی جو ان کے لئے صحیح ہیں۔
1
|
|
2
|
|
References Abdul-Wahab, S. A. and Al-Alawi, S. M. (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling & Software, 17(3):219–28. Agirre-Basurko, E., Ibarra-Berastegi, G. and Madariaga, I. (2006). Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environmental Modelling & Software, 21(4):430–46. Aguilar-Martinez, S. (2008). Forecasts of Tropical Pacific Sea Surface Temperatures by Neural Networks and Support Vector Regression. M.Sc. thesis, University of British Columbia. Aires, F. (2004). Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 1. Network weights. Journal of Geophysical Research, 109. D10303, doi:10.1029/2003JD004173. Aires, F., Chedin, A. and Nadal, J. P. (2000). Independent component analysis of multivariate time series: Application to the tropical SST variability. Journal of Geophysical Research, 105(D13):17437–55. Aires, F., Prigent, C. and Rossow, W. B. (2004a). Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 2. Output errors. Journal of Geophysical Research, 109. D10304, doi:10.1029/2003JD004174. Aires, F., Prigent, C. and Rossow, W. B. (2004b). Neural network uncertainty assessment using Bayesian statistics with application to remote sensing: 3. Network Jacobians. Journal of Geophysical Research, 109. D10305, doi:10.1029/2003JD004175. Amari, S., Murata, N., Müller, K.-R., Finke, M. and Yang, H. (1996). Statistical theory of overtraining – is cross validation asymptotically effective? Advances in Neural Information Processing Systems, 8:176–182. An, S. I., Hsieh, W. W. and Jin, F. F. (2005). A nonlinear analysis of the ENSO cycle and its interdecadal changes. Journal of Climate, 18(16):3229–39. An, S. I., Ye, Z. Q. and Hsieh, W. W. (2006). Changes in the leading ENSO modes associated with the late 1970s climate shift: Role of surface zonal curren; t. Geophysical Research Letters, 33(14). L14609, doi:10.1029/2006GL026604. Bakir, G. H., Weston, J. and Schölkopf, B. (2004). Learning to find pre-images. Advances in Neural Information Processing Systems, 16:449–56. Balakrishnan, P. V., Cooper, M. C., Jacob, V. S. and Lewis, P. A. (1994). A study of the classification capabilities of neural networks using unsupervised learning – a comparison with k-means clustering. Psychometrika, 59(4):509–25. 322 Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 323 Baldwin, M., Gray, L., Dunkerton, T. et al. (2001). The Quasi-Biennial Oscillation. Reviews of Geophysics, 39:179–229. Bankert, R. L. (1994). Cloud classification of AVHRR imagery in maritime regions using a probabilistic neural network. Journal of Applied Meteorology, 33(8):909–18. Barnett, T. P. (1983). Interaction of the monsoon and Pacific trade wind system at interannual time scales Part I: The equatorial zone. Monthly Weather Review, 111(4):756–73. Barnett, T. P. and Preisendorfer, R. (1987). Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis. Monthly Weather Review, 115(9):1825–50. Barnston, A. G. and Ropelewski, C. F. (1992). Prediction of ENSO episodes using canonical correlation analysis. Journal of Climate, 5:1316–45. Barnston, A. G., van den Dool, H. M., Zebiak, S. E. et al. (1994). Long-lead seasonal forecasts – where do we stand? Bulletin of the American Meteorological Society, 75:2097–114. Barron, A. R. (1993). Universal approximation bounds for superposition of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930–45. Benediktsson, J. A., Swain, P. H. and Ersoy, O. K. (1990). Neural network approaches versus statistical-methods in classification of multisource remote-sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28(4):540–52. Bhattacharya, B., Price, R. K. and Solomatine, D. P. (2007). Machine learning approach to modeling sediment transport. Journal of Hydraulic Engineering, 133(4):440–50. Bhattacharya, B. and Solomatine, D. P. (2005). Neural networks and M5 model trees in modelling water level – discharge relationship. Neurocomputing, 63:381–96. Bickel, P. J. and Doksum, K. A. (1977). Mathematical Statistics: Basic Ideas and Selected Topics. Oakland, CA: Holden-Day. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon Press. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer. Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Haussler, D., ed., Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144–52. New York: ACM Press. Box, G. P. E. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. Oakland, CA: Holden-Day. Boyle, P. and Frean, M. (2005). Dependent Gaussian processes. In Saul, L., Weiss, Y. and Bottou, L., eds., Advances in Neural Information Processing Systems, volume 17, pp. 217–24. Cambridge, MA: MIT Press. Boznar, M., Lesjak, M. and Mlakar, P. (1993). A neural-network-based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial-areas of complex terrain. Atmospheric Environment Part B-Urban Atmosphere, 27(2):221–30. Brajard, J., Jamet, C., Moulin, C. and Thiria, S. (2006). Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents from satellite ocean colour sensor: Application to absorbing aerosols. Neural Networks, 19:178–85. Breiman, L. (1996). Bagging predictions. Machine Learning, 24:123–40. Breiman, L. (2001). Random forests. Machine Learning, 45:5–32. Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 80:580–98. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 324 References Breiman, L., Friedman, J., Olshen, R. A. and Stone, C. (1984). Classification and Regression Trees. New York: Chapman and Hall. Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Englewood Cliffs, New Jersey: Prentice-Hall. Bretherton, C. S., Smith, C. and Wallace, J. M. (1992). An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5:541–60. Brier, W. G. (1950). Verification of forecasts expressed in terms of probabilities. Monthly Weather Review, 78:1–3. Brooks, H. E. and Doswell, C. A. (2002). Deaths in the 3 May 1999 Oklahoma City tornado from a historical perspective. Weather and Forecasting, 17(3):354–61. Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and Its Applications, 6:76–90. Bürger, C. M., Kolditz, O., Fowler, H. J. and Blenkinsop, S. (2007). Future climate scenarios and rainfall-runoff modelling in the Upper Gallego catchment (Spain). Environmental Pollution, 148(3):842–54. Bürger, G. (1996). Expanded downscaling for generating local weather scenarios. Climate Research, 7(2):111–28. Bürger, G. (2002). Selected precipitation scenarios across Europe. Journal of Hydrology, 262(1-4):99–110. Burrows, W. R. (1991). Objective guidance for 0–24 hour and 24–48 hour mesoscale forecasts of lake-effect snow using CART. Weather and Forecasting, 6:357–78. Burrows, W. R. (1997). CART regression models for predicting UV radiation at the ground in the presence of cloud and other environmental factors. Journal of Applied Meteorology, 36:531–44. Burrows, W. R. (1999). Combining classification and regression trees and the neuro-fuzzy inference system for environmental data modeling. In 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS, pp. 695–99. New York, NY: NAFIPS. Burrows, W. R., Benjamin, M., Beauchamp, S. et al. CART decision-tree statistical analysis and prediction of summer season maximum surface ozone for the Vancouver, Montreal, and Atlantic regions of Canada. Journal of Applied Meteorology, 34:1848–62. Burrows, W. R., Price, C. and Wilson, L. J. (2005). Warm season lightning probability prediction for Canada and the northern United States. Weather and Forecasting, 20:971–88. Cai, S., Hsieh, W. W. and Cannon, A. J. (2008). A comparison of Bayesian and conditional density models in probabilistic ozone forecasting. In Proceedings of the 2008 IEEE World Congress in Computational Intelligence, Hong Kong. (See: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber= 4634117) Camps-Valls, G., Bruzzone, L., Rojo-Alvarez, J. L. and Melgani, F. (2006). Robust support vector regression for biophysical variable estimation from remotely sensed images. IEEE Geoscience and Remote Sensing Letters, 3(3):339–43. Cannon, A. J. (2006). Nonlinear principal predictor analysis: Application to the Lorenz system. Journal of Climate, 19:579–89. Cannon, A. J. (2007). Nonlinear analog predictor analysis: A coupled neural network/analog model for climate downscaling. Neural Networks, 20:444–53. doi:10.1016/j.neunet.2007.04.002. Cannon, A. J. (2008). Probabilistic multi-site precipitation downscaling by an expanded Bernoulli-gamma density network. Journal of Hydrometeorology, 9:1284–300. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 325 Cannon, A. J. and Hsieh, W. W. (2008). Robust nonlinear canonical correlation analysis: application to seasonal climate forecasting. Nonlinear Processes in Geophysics, 12:221–32. Cannon, A. J. and Lord, E. R. (2000). Forecasting summertime surface-level ozone concentrations in the Lower Fraser Valley of British Columbia: An ensemble neural network approach. Journal of the Air and Waste Management Association, 50:322–39. Cannon, A. J. and McKendry, I. G. (1999). Forecasting all-India summer monsoon rainfall using regional circulation principal components: A comparison between neural network and multiple regression models. International Journal of Climatology, 19(14):1561–78. Cannon, A. J. and McKendry, I. G. (2002). A graphical sensitivity analysis for statistical climate models: application to Indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models. International Journal of Climatology, 22:1687–708. Cannon, A. J. and Whitfield, P. H. (2002). Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. Journal of Hydrology, 259(1-4):136–51. Cavazos, T. (1997). Downscaling large-scale circulation to local winter rainfall in northeastern Mexico. International Journal of Climatology, 17(10):1069–82. Cavazos, T. (1999). Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. Journal of Climate, 12:1506–23. Cawley, G. C., Janacek, G. J., Haylock, M. R. and Dorling, S. R. (2007). Predictive uncertainty in environmental modelling. Neural Networks, 20:537–49. Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: A library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. Chen, K. S., Tzeng, Y. C. and Chen, P. C. (1999). Retrieval of ocean winds from satellite scatterometer by a neural network. IEEE Transactions on Geoscience and Remote Sensing, 37(1):247–56. Chen, X. L., Li, Y. S., Liu, Z. G. et al. (2004). Integration of multi-source data for water quality classification in the Pearl River estuary and its adjacent coastal waters of Hong Kong. Continental Shelf Research, 24(16):1827–43. Cherkassky, V. and Mulier, F. (1998). Learning from Data. New York: Wiley. Chevallier, F. (2005). Comments on ‘New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model’. Monthly Weather Review, 133(12):3721–3. Chevallier, F., Cheruy, F., Scott, N. A. and Chedin, A. (1998). A neural network approach for a fast and accurate computation of a longwave radiative budget. Journal of Applied Meteorology, 37(11):1385–97. Chevallier, F., Morcrette, J. J., Cheruy, F. and Scott, N. A. (2000). Use of a neural-network-based long-wave radiative-transfer scheme in the ECMWF atmospheric model. Quarterly Journal of the Royal Meteorological Society, 126(563 Part B):761–76. Christiansen, B. (2005). The shortcomings of nonlinear principal component analysis in identifying circulation regimes. Journal of Climate, 18(22):4814–23. Christiansen, B. (2007). Reply. Journal of Climate, 20:378–9. Chu, W., Keerthi, S. S. and Ong, C. J. (2004). Bayesian support vector regression using a unified loss function. IEEE Transactions on Neural Networks, 15(1):29–44. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 326 References Clarke, T. (1990). Generalization of neural network to the complex plane. Proceedings of International Joint Conference on Neural Networks, 2:435–40. Collins, D. C., Reason, C. J. C. and Tangang, F. (2004). Predictability of Indian Ocean sea surface temperature using canonical correlation analysis. Climate Dynamics, 22(5):481–97. Comon, P. (1994). Independent component analysis – a new concept? Signal Processing, 36:287–314. Comrie, A. C. (1997). Comparing neural networks and regression models for ozone forecasting. Journal of the Air and Waste Management Association, 47(6): 653–63. Cordisco, E., Prigent, C. and Aires, F. (2006). Snow characterization at a global scale with passive microwave satellite observations. Journal of Geophysical Research, 111(D19). D19102, doi:10.1029/2005JD006773. Cornford, D., Nabney, I. T. and Bishop, C. M. (1999). Neural network-based wind vector retrieval from satellite scatterometer data. Neural Computing and Applications, 8:206–17. doi:10.1007/s005210050023. Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning, 20:273–97. Coulibaly, P. and Evora, N. D. (2007). Comparison of neural network methods for infilling missing daily weather records. Journal of Hydrology, 341(1-2):27–41. Cox, D. T., Tissot, P. and Michaud, P. (2002). Water level observations and short-term predictions including meteorological events for entrance of Galveston Bay, Texas. Journal of Waterway, Port, Coastal and Ocean Engineering, 128(1):21–9. Cressie, N. (1993). Statistics for Spatial Data. New York: Wiley. Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Methods. Cambridge, UK: Cambridge University Press. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2:303–14. Dash, J., Mathur, A., Foody, G. M. et al. (2007). Land cover classification using multi-temporal MERIS vegetation indices. International Journal of Remote Sensing, 28(6):1137–59. Davidon, W. C. (1959). Variable metric methods for minimization. A.E.C.Res. and Develop. Report ANL-5990, Argonne National Lab. Dawson, C. W. and Wilby, R. L. (2001). Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25(1):80–108. De’ath, G. and Fabricius, K. E. (2000). Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81(11):3178–92. Del Frate, F., Ferrazzoli, P., Guerriero, L. et al. (2004). Wheat cycle monitoring using radar data and a neural network trained by a model. IEEE Transactions on Geoscience and Remote Sensing, 42(1):35–44. Del Frate, F., Pacifici, F., Schiavon, G. and Solimini, C. (2007). Use of neural networks for automatic classification from high-resolution images. IEEE Transactions on Geoscience and Remote Sensing, 45(4):800–9. Del Frate, F., Petrocchi, A., Lichtenegger, J. and Calabresi, G. (2000). Neural networks for oil spill detection using ERS-SAR data. IEEE Transactions on Geoscience and Remote Sensing, 38(5):2282–7. Del Frate, F. and Schiavon, G. (1999). Nonlinear principal component analysis for the radiometric inversion of atmospheric profiles by using neural networks. IEEE Transactions on Geoscience and Remote Sensing, 37(5):2335–42. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 327 Del Frate, F. and Solimini, D. (2004). On neural network algorithms for retrieving forest biomass from SAR data. IEEE Transactions on Geoscience and Remote Sensing, 42(1):24–34. Deser, C. and Blackmon, M. L. (1995). On the relationship between tropical and North Pacific sea surface temperature variations. Journal of Climate, 8(6):1677–80. Diaz, H. F. and Markgraf, V., eds. (2000). El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts. Cambridge, UK: Cambridge University Press. Dibike, Y. B. and Coulibaly, P. (2006). Temporal neural networks for downscaling climate variability and extremes. Neural Networks, 19(2):135–44. Dibike, Y. B. and Solomatine, D. P. (2001). River flow forecasting using artificial neural networks. Physics and Chemistry of the Earth, Part B - Hydrology, Oceans and Atmosphere, 26(1):1–7. Dibike, Y. B., Velickov, S., Solomatine, D. and Abbott, M. B. (2001). Model induction with support vector machines: Introduction and applications. Journal of Computing In Civil Engineering, 15(3):208–16. Dong, D. and McAvoy, T. J. (1996). Nonlinear principal component analysis based on principal curves and neural networks. Computers and Chemical Engineering, 20:65–78. Dorling, S. R., Foxall, R. J., Mandic, D. P. and Cawley, G. C. (2003). Maximum likelihood cost functions for neural network models of air quality data. Atmospheric Environment, 37:3435–43. doi:10.1016/S1352-2310(03)00323-6. Draper, N. R. and Smith, H. (1981). Applied Regression Analysis, 2nd edn. New York: Wiley. Duda, R. O., Hart, P. E. and Stork, D. G. (2001). Pattern Classification, 2nd edn. New York: Wiley. Dutot, A. L., Rynkiewicz, J., Steiner, F. E. and Rude, J. (2007). A 24 hr forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environmental Modelling & Software, 22(9):1261–9. Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7:1–26. Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Boca Raton, Florida: CRC Press. Elachi, C. and van Zyl, J. (2006). Introduction To The Physics and Techniques of Remote Sensing, 2nd edn. Hoboken, NJ: Wiley-Interscience. Elsner, J. B. and Tsonis, A. A. (1996). Singular Spectrum Analysis. New York: Plenum. Emery, W. J. and Thomson, R. E. (1997). Data Analysis Methods in Physical Oceanography. Oxford: Pergamon. Essenreiter, R., Karrenbach, M. and Treitel, S. (2001). Identification and classification of multiple reflections with self-organizing maps. Geophysical Prospecting, 49(3):341–52. Fablet, R. and Le Josse, N. (2005). Automated fish age estimation from otolith images using statistical learning. Fisheries Research, 72(2-3):279–90. Fang, W. and Hsieh, W. W. (1993). Summer sea surface temperature variability off Vancouver Island from satellite data. Journal of Geophysical Research, 98(C8):14391–400. Faucher, M., Burrows, W. R. and Pandolfo, L. (1999). Empirical-statistical reconstruction of surface marine winds along the western coast of Canada. Climate Research, 11(3):173–90. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 328 References Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal, 13:317–22. Fletcher, R. and Powell, M. J. D. (1963). A rapidly convergent descent method for minization. Computer Journal, 6:163–8. Fletcher, R. and Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer Journal, 7:149–54. Fogel, D. (2005). Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd edn. Hoboken, NJ: Wiley-IEEE. Foody, G. M. and Mathur, A. (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(6):1335–43. Foresee, F. D. and Hagan, M. T. (1997). Gauss–Newton approximation to Bayesian regularization. In Proceedings of the 1997 International Joint Conference on Neural Networks. (See: http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=614194) Fraser, R. H. and Li, Z. (2002). Estimating fire-related parameters in boreal forest using spot vegetation. Remote Sensing of Environment, 82(1):95–110. Freund, Y. and Schapire, R. E. (1997). A decision-theoretical generalization of on-line learning and an application to boosting. Journal of Computer System Sciences, 55:119–39. Galton, F. J. (1885). Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute, 15:246–63. Garcia-Gorriz, E. and Garcia-Sanchez, J. (2007). Prediction of sea surface temperatures in the western Mediterranean Sea by neural networks using satellite observations. Geophysical Research Letters, 34. L11603, doi:10.1029/2007GL029888. Gardner, M. W. and Dorling, S. R. (1999). Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33:709–19. Gardner, M. W. and Dorling, S. R. (2000). Statistical surface ozone models: an improved methodology to account for non-linear behaviour. Atmospheric Environment, 34:21–34. Georgiou, G. and Koutsougeras, C. (1992). Complex domain backpropagation. IEEE Trans. Circuits and Systems II, 39:330–4. Ghil, M., Allen, M. R., Dettinger, M. D. et al. (2002). Advanced spectral methods for climatic time series. Reviews of Geophysics, 40. 1003, DOI: 10.1029/ 2000RG000092. Ghosh, S. and Mujumdar, P. P. (2008). Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Advances in Water Resources, 31(1):132–46. Gill, A. E. (1982). Atmosphere-Ocean Dynamics. Orlando Florida: Academic Press. Gill, P. E., Murray, W. and Wright, M. H. (1981). Practical Optimization. London: Academic Press. Gneiting, T., Raftery, A. E., Westveld, A. H. I. and Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review, 133:1098–118. Goddard, L., Mason, S. J., Zebiak, S. E. et al. (2001). Current approaches to seasonal-to-interannual climate predictions. International Journal of Climatology, 21(9):1111–52. Goldfarb, F. (1970). A family of variable metric methods derived by variational means. Mathematics of Computation, 24:23–6. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 329 Golub, G. H., Heath, M. and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21:215–23. Gopal, S. and Woodcock, C. (1996). Remote sensing of forest change using artificial neural networks. IEEE Transactions on Geoscience and Remote Sensing, 34:398–404. Gourrion, J., Vandemark, D., Bailey, S. et al. (2002). A two-parameter wind speed algorithm for Ku-band altimeters. Journal of Atmospheric and Oceanic Technology, 19(12):2030–48. Grieger, B. and Latif, M. (1994). Reconstruction of the El Niño attractor with neural networks. Climate Dynamics, 10(6):267–76. Gross, L., Thiria, S., Frouin, R. and Greg, M. B. (2000). Artificial neural networks for modeling the transfer function between marine reflectance and phytoplankton pigment concentration. Journal of Geophysical Research, 105(C2):3483–3496. doi: 10.1029/1999JC900278. Guégan, J. F., Lek, S. and Oberdorff, T. (1998). Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature, 391:382–4. Gull, S. F. (1989). Developments in maximum entropy data analysis. In Skilling, J., ed. Maximum Entropy and Bayesian Methods, pp. 53–71. Dordrecht: Kluwer. Haber, E. and Oldenburg, D. (2000). A GCV based method for nonlinear ill-posed problems. Computational Geoscience, 4:41–63. Hamilton, K. (1988). A detailed examination of the extratropical response to tropical El Niño/Southern Oscillation events. Journal of Climatology, 8:67–86. Hamilton, K. (1998). Dynamics of the tropical middle atmosphere: A tutorial review. Atmosphere-Ocean, 36(4):319–54. Hamilton, K. and Hsieh, W. W. (2002). Representation of the QBO in the tropical stratospheric wind by nonlinear principal component analysis. Journal of Geophysical Research, 107(D15). 4232, doi: 10.1029/2001JD001250. Han, G. and Shi, Y. (2008). Development of an Atlantic Canadian coastal water level neural network model (ACCSLENNT). Journal of Atmospheric and Oceanic Technology, 25:2117–32. Hardman-Mountford, N. J., Richardson, A. J., Boyer, D. C., Kreiner, A. and Boyer, H. J. (2003). Relating sardine recruitment in the Northern Benguela to satellite-derived sea surface height using a neural network pattern recognition approach. Progress in Oceanography, 59:241–55. Hardoon, D. R., Szedmak, S. and Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16:2639–64. Hardy, D. M. (1977). Empirical eigenvector analysis of vector wind measurements. Geophysical Research Letters, 4:319–20. Hardy, D. M. and Walton, J. J. (1978). Principal component analysis of vector wind measurements. Journal of Applied Meteorology, 17:1153–62. Hasselmann, K. (1988). PIPs and POPs – a general formalism for the reduction of dynamical systems in terms of Principal Interaction Patterns and Principal Oscillation Patterns. Journal of Geophysical Research, 93:11015–20. Hasselmann, S. and Hasselmann, K. (1985). Computations and parameterizations of the nonlinear energy-transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. Journal of Physical Oceanography, 15(11):1369–77. Hasselmann, S., Hasselmann, K., Allender, J. H. and Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy-transfer in a gravity-wave spectrum. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 330 References Part II: Parameterizations of the nonlinear energy-transfer for application in wave models. Journal of Physical Oceanography, 15(11):1378–91. Hastie, T. and Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84:502–16. Hastie, T., Tibshirani, R. and Friedman, J. (2001). Elements of Statistical Learning: Data Mining, Inference and Prediction. New York: Springer-Verlag. Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algorithms. New York: Wiley. Haupt, S. E., Pasini, A. and Marzban, C., eds. (2009). Artificial Intelligence Methods in the Environmental Sciences. Springer. Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. New York: Prentice Hall. Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L. and Goodess, C. M. (2006). Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. International Journal of Climatology, 26(10):1397–415. doi: 10.1002/joc.1318. Heidke, P. (1926). Berechnung des Erfolges und der Güte der Windstärkevorhersagen in Sturmwarnungsdienst. Geografiska Annaler, 8:310–49. Hennon, C. C., Marzban, C. and Hobgood, J. S. (2005). Improving tropical cyclogenesis statistical model forecasts through the application of a neural network classifier. Weather and Forecasting, 20:1073–1083. doi: 10.1175/WAF890.1. Herman, A. (2007). Nonlinear principal component analysis of the tidal dynamics in a shallow sea. Geophysical Research Letters, 34(2). Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6):409–36. Hewitson, B. C. and Crane, R. G. (1996). Climate downscaling: Techniques and application. Climate Research, 7(2):85–95. Hewitson, B. C. and Crane, R. G. (2002). Self-organizing maps: applications to synoptic climatology. Climate Research, 22(1):13–26. Hirose, A. (1992). Continuous complex-valued backpropagation learning. Electronic Letters, 28:1854–5. Hoerling, M. P., Kumar, A. and Zhong, M. (1997). El Niño, La Niña and the nonlinearity of their teleconnections. Journal of Climate, 10:1769–86. Holton, J. R. and Tan, H.-C. (1980). The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. Journal of the Atmospheric Sciences, 37:2200–8. Hong, Y., Hsu, K. L., Sorooshian, S. and Gao, X. G. (2004). Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology, 43(12):1834–52. Horel, J. D. (1981). A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field. Monthly Weather Review, 109:2080–92. Horel, J. D. (1984). Complex principal component analysis: Theory and examples. Journal of Climate and Applied Meteorology, 23:1660–73. Horel, J. D. and Wallace, J. M. (1981). Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109:813–29. Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4:252–7. Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2:359–66. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 331 Horstmann, J., Schiller, H., Schulz-Stellenfleth, J. and Lehner, S. (2003). Global wind speed retrieval from SAR. IEEE Transactions on Geoscience and Remote Sensing, 41(10):2277–86. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:417–41. Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28:321–77. Hou, Z. and Koh, T. S. (2004). Image denoising using robust regression. IEEE Signal Processing Letters, 11:234–46. Hsieh, W. W. (2000). Nonlinear canonical correlation analysis by neural networks. Neural Networks, 13:1095–105. Hsieh, W. W. (2001a). Nonlinear canonical correlation analysis of the tropical Pacific climate variability using a neural network approach. Journal of Climate, 14:2528–39. Hsieh, W. W. (2001b). Nonlinear principal component analysis by neural networks. Tellus, 53A:599–615. Hsieh, W. W. (2004). Nonlinear multivariate and time series analysis by neural network methods. Reviews of Geophysics, 42. RG1003, doi:10.1029/2002RG000112. Hsieh, W. W. (2007). Nonlinear principal component analysis of noisy data. Neural Networks, 20:434–43. Hsieh, W. W. and Cannon, A. J. (2008). Towards robust nonlinear multivariate analysis by neural network methods. In Donner, R. and Barbosa, S., eds., Nonlinear Time Series Analysis in the Geosciences – Applications in Climatology, Geodynamics, and Solar-Terrestrial Physics, pp. 97–124. Berlin: Springer. Hsieh, W. W. and Hamilton, K. (2003). Nonlinear singular spectrum analysis of the tropical stratospheric wind. Quarterly Journal of the Royal Meteorological Society, 129:2367–82. Hsieh, W. W. and Tang, B. (1998). Applying neural network models to prediction and data analysis in meteorology and oceanography. Bulletin of the American Meteorological Society, 79:1855–70. Hsieh, W. W., Tang, B. and Garnett, E. R. (1999). Teleconnections between Pacific sea surface temperatures and Canadian prairie wheat yield. Agricultural and Forest Meteorology, 96:209–17. Hsieh, W. W. and Wu, A. (2002). Nonlinear multichannel singular spectrum analysis of the tropical Pacific climate variability using a neural network approach. Journal of Geophysical Research, 107(C7). doi: 10.1029/2001JC000957. Hsieh, W. W., Wu, A. and Shabbar, A. (2006). Nonlinear atmospheric teleconnections. Geophysical Research Letters, 33. L07714, doi:10.1029/2005GL025471. Hsu, K. L., Gao, X. G., Sorooshian, S. and Gupta, H. V. (1997). Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36(9):1176–90. Hsu, K. L., Gupta, H. V. and Sorooshian, S. (1995). Artificial neural-network modeling of the rainfall-runoff process. Water Resources Research, 31(10):2517–30. Huang, C., Davis, L. S. and Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4):725–49. Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35:73–101. Hyvärinen, A., Karhunen, J. and Oja, E. (2001). Independent Component Analysis. New York: Wiley. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 332 References IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. Jamet, C. and Hsieh, W. W. (2005). The nonlinear atmospheric variability in the winter northeast Pacific associated with the Madden–Julian Oscillation. Geophysical Research Letters, 32(13). L13820, doi: 10.1029/2005GL023533. Jamet, C., Thiria, S., Moulin, C. and Crepon, M. (2005). Use of a neurovariational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery: A feasibility study. Journal of Atmospheric and Oceanic Technology, 22(4):460–75. Jaynes, E. T. (2003). Probability theory: the logic of science. Cambridge, UK: Cambridge University Press. Jenkins, G. M. and Watts, D. G. (1968). Spectral Analysis and Its Applications. San Francisco: Holden-Day. Jin, F. F. (1997a). An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. Journal of the Atmospheric Sciences, 54(7):811–29. Jin, F. F. (1997b). An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. Journal of the Atmospheric Sciences, 54(7):830–47. Jolliffe, I. T. (2002). Principal Component Analysis. New York: Springer. Jolliffe, I. T. and Stephenson, D. B., eds., (2003). Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Chichester: Wiley. Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23:187–200. Kalnay, E., Kanamitsu, M., Kistler, R. et al. (1996). The NCEP/NCAR 40 year reanalysis project. Bulletin of the American Meteorological Society, 77(3):437–71. Kaplan, A., Kushnir, Y. and Cane, M. A. (2000). Reduced space optimal interpolation of historical marine sea level pressure: 1854-1992. Journal of Climate, 13(16):2987–3002. Karl, T. R., Wang, W. C., Schlesinger, M. E., Knight, R. W. and Portman, D. (1990). A method of relating general-circulation model simulated climate to the observed local climate. 1. Seasonal statistics. Journal of Climate, 3(10):1053–79. Karush, W. (1939). Minima of functions of several variables with inequalities as side constraints. M.Sc. thesis, University of Chicago. Keiner, L. E. and Yan, X.-H. (1998). A neural network model for estimating sea surface chlorophyll and sediments from Thematic Mapper imagery. Remote Sensing of Environment, 66:153–65. Kelly, K. (1988). Comment on ‘Empirical orthogonal function analysis of advanced very high resolution radiometer surface temperature patterns in Santa Barbara Channel’ by G.S.E. Lagerloef and R.L. Bernstein. Journal of Geophysical Research, 93(C12):15743–54. Khan, M. S. and Coulibaly, P. (2006). Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 11(3):199–205. Kharin, V. V. and Zwiers, F. W. (2003). On the ROC score of probability forecasts. Journal of Climate, 16(24):4145–50. Kim, T. and Adali, T. (2002). Fully complex multi-layer perceptron network for nonlinear signal processing. Journal of VLSI Signal Processing, 32:29–43. Kirby, M. J. and Miranda, R. (1996). Circular nodes in neural networks. Neural Computation, 8:390–402. Kohonen, T. (1982). Self-organizing formation of topologically correct feature maps. Biological Cybernetics, 43:59–69. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 333 Kohonen, T. (2001). Self-Organizing Maps, 3rd edn. Berlin: Springer. Kolehmainen, M., Martikainen, H. and Ruuskanen, J. (2001). Neural networks and periodic components used in air quality forecasting. Atmospheric Environment, 35(5):815–25. Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 37:233–43. Krasnopolsky, V. M. (2007). Neural network emulations for complex multidimensional geophysical mappings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling. Reviews of Geophysics, 45(3). RG3009, doi:10.1029/2006RG000200. Krasnopolsky, V. M., Breaker, L. C. and Gemmill, W. H. (1995). A neural network as a nonlinear transfer function model for retrieving surface wind speeds from the special sensor microwave imager. Journal of Geophysical Research, 100(C6):11033–45. Krasnopolsky, V. M., Chalikov, D. V. and Tolman, H. L. (2002). A neural network technique to improve computational efficiency of numerical oceanic models. Ocean Modelling, 4:363–83. Krasnopolsky, V. M. and Chevallier, F. (2003). Some neural network applications in environmental sciences. Part II: advancing computational efficiency in environmental numerical models. Neural Networks, 16(3-4):335–48. Krasnopolsky, V. M. and Fox-Rabinovitz, M. S. (2006). Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Networks, 19:122–34. Krasnopolsky, V. M., Fox-Rabinovitz, M. S. and Chalikov, D. V. (2005a). Comments on ‘New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model’ - Reply. Monthly Weather Review, 133(12):3724–8. Krasnopolsky, V. M., Fox-Rabinovitz, M. S. and Chalikov, D. V. (2005b). New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model. Monthly Weather Review, 133(5):1370–83. Krasnopolsky, V. M., Gemmill, W. H. and Breaker, L. C. (1999). A multiparameter empirical ocean algorithm for SSM/I retrievals. Canadian Journal of Remote Sensing, 25:486–503. Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. In Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probabilities, pp. 481–92. University of California Press. Kukkonen, J., Partanen, L., Karppinen, A. et al. (2003). Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment, 37(32):4539–50. Kwiatkowska, E. J. and Fargion, G. S. (2003). Application of machine-learning techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data. IEEE Transactions on Geoscience and Remote Sensing, 41(12):2844–60. Kwok, J. T.-Y. and Tsang, I. W.-H. (2004). The pre-image problem in kernel methods. IEEE Transactions on Neural Networks, 15:1517–25. Lai, P. L. and Fyfe, C. (1999). A neural implementation of canonical correlation analysis. Neural Networks, 12:1391–7. Lai, P. L. and Fyfe, F. (2000). Kernel and non-linear canonical correlation analysis. International Journal of Neural Systems, 10:365–77. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 334 References Lambert, S. J. and Fyfe, J. C. (2006). Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Climate Dynamics, 26(7-8):713–28. Lax, D. A. (1985). Robust estimators of scale: Finite-sample performance in long-tailed symmetric distributions. Journal of the American Statistical Association, 80:736–41. Le, N. D. and Zidek, J. V. (2006). Statistical Analysis of Environmental Space-Time Processes. New York: Springer. LeBlond, P. H. and Mysak, L. A. (1978). Waves in the Ocean. Amsterdam: Elsevier. LeCun, Y., Kanter, I. and Solla, S. A. (1991). Second order properties of error surfaces: Learning time and generalization. In Advances in Neural Information Processing Systems, volume 3, pp. 918–24. Cambridge, MA: MIT Press. Lee, J., Weger, R. C., Sengupta, S. K. and Welch, R. M. (1990). A neural network approach to cloud classification. IEEE Transactions on Geoscience and Remote Sensing, 28(5):846–55. Lee, Y., Wahba, G. and Ackerman, S. A. (2004). Cloud classification of satellite radiance data by multicategory support vector machines. Journal of Atmospheric and Oceanic Technology, 21(2):159–69. Legler, D. M. (1983). Empirical orthogonal function analysis of wind vectors over the tropical Pacific region. Bulletin of the American Meteorological Society, 64(3):234–41. Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathematics, 2:164–8. Li, S., Hsieh, W. W. and Wu, A. (2005). Hybrid coupled modeling of the tropical Pacific using neural networks. Journal of Geophysical Research, 110(C09024). doi: 10.1029/2004JC002595. Liu, Y. G. and Weisberg, R. H. (2005). Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. Journal Of Geophysical Research – Oceans, 110(C6). C06003, doi:10.1029/2004JC002786. Liu, Y., Weisberg, R. H. and Mooers, C. N. K. (2006). Performance evaluation of the self-organizing map for feature extraction. Journal of Geophysical Research, 111 (C05018). doi:10.1029/2005JC003117. Liu, Y. G., Weisberg, R. H. and Shay, L. K. (2007). Current patterns on the West Florida Shelf from joint self-organizing map analyses of HF radar and ADCP data. Journal of Atmospheric and Oceanic Technology, 24(4):702–12. Liu, Z. and Jin, L. (2008). LATTICESVM – A new method for multi-class support vector machines. In Proceedings of the 2008 IEEE World Congress in Computational Intelligence, Hong Kong. (See http://ieeexplore.ieee.org/xpls/ abs_all.jsp?arnumber=463387) Lorenz, E. N. (1956). Empirical orthogonal functions and statistical weather prediction. Sci. rep. no. 1, Statistical Forecasting Project, Dept. of Meteorology, MIT. Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20:130–41. Lu, W. Z. and Wang, W. J. (2005). Potential assessment of the ‘support vector machine’ method in forecasting ambient air pollutant trends. Chemosphere, 59(5):693–701. Luenberger, D. G. (1984). Linear and Nonlinear Programming, 2nd edn. Reading, MA: Addison-Wesley. MacKay, D. J. C. (1992a). A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3):448–72. MacKay, D. J. C. (1992b). Bayesian interpolation. Neural Computation, 4(3):415–47. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 335 MacKay, D. J. C. (1995). Probable networks and plausible predictions – a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6:469–505. MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge, UK: Cambridge University Press. Maier, H. R. and Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software, 15:101–24. Mantua, N. J. and Hare, S. R. (2002). The Pacific decadal oscillation. Journal of Oceanography, 58(1):35–44. Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11:431–41. Marzban, C. (2004). The ROC curve and the area under it as performance measures. Weather and Forecasting, 19(6):1106–14. Marzban, C. and Stumpf, G. J. (1996). A neural network for tornado prediction based on doppler radar-derived attributes. Journal of Applied Meteorology, 35(5):617–26. Marzban, C. and Stumpf, G. J. (1998). A neural network for damaging wind prediction. Weather and Forecasting, 13:151–63. Marzban, C. and Witt, A. (2001). A Bayesian neural network for severe-hail size prediction. Weather and Forecasting, 16(5):600–10. Masters, T. (1995). Advanced Algorithms for Neural Networks – A C++ Sourcebook. New York: Wiley. McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in neural nets. Bulletin of Mathematical Biophysics, 5:115–37. McGinnis, D. L. (1997). Estimating climate-change impacts on Colorado Plateau snowpack using downscaling methods. Professional Geographer, 49(1):117–25. McIntire, T. J. and Simpson, J. J. (2002). Arctic sea ice, cloud, water, and lead classification using neural networks and 1.61μm data. IEEE Transactions on Geoscience and Remote Sensing, 40(9):1956–72. Meinen, C. S. and McPhaden, M. J. (2000). Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. Journal of Climate, 13:3551–9. Mejia, C., Thiria, S., Tran, N., Crepon, M. and Badran, F. (1998). Determination of the geophysical model function of the ERS-1 scatterometer by the use of neural networks. Journal of Geophysical Research, 103(C6):12853–68. Miikkulainen, R., Bryant, B. D., Cornelius, R. et al. (2006). Computational intelligence in games. In Yen, G. and Fogel, D., eds., Computational Intelligence: Principles and Practice, pp. 155–191. IEEE Computational Intelligence Soc. Mika, S., Schölkopf, B., Smola, A. J. et al. (1999). Kernel PCA and de-noising in feature spaces. In Kearns, M., Solla, S., and Cohn, D., eds., Advances in Neural Information Processing Systems, volume 11, pp. 536–42. Cambridge, MA: MIT Press. Miller, S. W. and Emery, W. J. (1997). An automated neural network cloud classifier for use over land and ocean surfaces. Journal of Applied Meteorology, 36(10): 1346–62. Mingoti, S. A. and Lima, J. O. (2006). Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174(3):1742–59. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 336 References Minns, A. W. and Hall, M. J. (1996). Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal – Journal Des Sciences Hydrologiques, 41(3):399–417. Minsky, M. and Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press. Monahan, A. H. (2000). Nonlinear principal component analysis by neural networks: theory and application to the Lorenz system. Journal of Climate, 13:821–35. Monahan, A. H. (2001). Nonlinear principal component analysis: Tropical Indo-Pacific sea surface temperature and sea level pressure. Journal of Climate, 14:219–33. Monahan, A. H. and Fyfe, J. C. (2007). Comment on ‘The shortcomings of nonlinear principal component analysis in identifying circulation regimes’. Journal of Climate, 20:375–77. Monahan, A. H., Fyfe, J. C. and Flato, G. M. (2000). A regime view of northern hemisphere atmospheric variability and change under global warming. Geophysical Research Letters, 27:1139–42. Monahan, A. H., Fyfe, J. C. and Pandolfo, L. (2003). The vertical structure of wintertime climate regimes of the northern hemisphere extratropical atmosphere. Journal of Climate, 16:2005–21. Monahan, A. H., Pandolfo, L. and Fyfe, J. C. (2001). The preferred structure of variability of the northern hemisphere atmospheric circulation. Geophysical Research Letters, 28:1019–22. Monahan, A. H., Tangang, F. T. and Hsieh, W. W. (1999). A potential problem with extended EOF analysis of standing wave fields. Atmosphere-Ocean, 37:241–54. Moody, J. and Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1:281–94. Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters). Journal of Geophysical Research, 93:10749–68. Mosteller, F. and Tukey, J. W. (1977). Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley. Nabney, I. T. (2002). Netlab: Algorithms for Pattern Recognition. London: Springer. Naujokat, B. (1986). An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. Journal of the Atmospheric Sciences, 43:1873–7. Neal, R. M. (1996). Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statistics. New York: Springer. Newbigging, S. C., Mysak, L. A. and Hsieh, W. W. (2003). Improvements to the non-linear principal component analysis method, with applications to ENSO and QBO. Atmosphere-Ocean, 41(4):290–98. Nguyen, D. and Widrow, B. (1990). Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In International Joint Conference on Neural Networks, volume 3, pp. 21–6. (See http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber= 137819) Niang, A., Badran, A., Moulin, C., Crepon, M., and Thiria, S. (2006). Retrieval of aerosol type and optical thickness over the Mediterranean from SeaWiFS images using an automatic neural classification method. Remote Sensing of Environment, 100:82–94. Niermann, S. (2006). Evolutionary estimation of parameters of Johnson distributions. Journal of Statistical Computation and Simulation, 76:185–93. Nitta, T. (1997). An extension of the back-propagation algorithm to complex numbers. Neural Networks, 10:1391–415. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 337 North, G. R., Bell, T. L., Cahalan, R. F. and Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110:699–706. Nunnari, G., Dorling, S., Schlink, U. et al. (2004). Modelling SO2 concentration at a point with statistical approaches. Environmental Modelling & Software, 19(10):887–905. Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15:267–73. Olden, J. D. and Jackson, D. A. (2002). A comparison of statistical approaches for modelling fish species distributions. Freshwater Biology, 47(10):1976–95. Olsson, J., Uvo, C. B., Jinno, K. et al. (2004). Neural networks for rainfall forecasting by atmospheric downscaling. Journal of Hydrologic Engineering, 9(1):1–12. Pacifici, F., Del Frate, F., Solimini, C. and Emery, W. J. (2007). An innovative neural-net method to detect temporal changes in high-resolution optical satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 45(9):2940–52. Park, Y. S., Cereghino, R., Compin, A. and Lek, S. (2003). Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecological Modelling, 160(3):265–80. Pasini, A., Lore, M. and Ameli, F. (2006). Neural network modelling for the analysis of forcings/temperatures relationships at different scales in the climate system. Ecological Modelling, 191(1):58–67. Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, Ser. 6, 2:559–72. Peirce, C. S. (1884). The numerical measure of the success of predictions. Science, 4:453–4. Penland, C. and Magorian, T. (1993). Prediction of Nino-3 sea surface temperatures using linear inverse modeling. Journal of Climate, 6(6):1067–76. Philander, S. G. (1990). El Niño, La Niña, and the Southern Oscillation. San Diego: Academic Press. Polak, E. (1971). Computational Methods in Optimization: A Unified Approach. New York: Academic Press. Polak, E. and Ribiere, G. (1969). Note sur la convergence de methods de directions conjures. Revue Francaise d’Informat. et de Recherche Operationnelle, 16:35–43. Powell, M. J. D. (1987). Radial basis functions for multivariate interpolation: a review. In Mason, J. and Cox, M., eds., Algorithms for Approximation, pp. 143–67. Oxford: Clarendon Press. Pozo-Vazquez, D., Esteban-Parra, M. J., Rodrigo, F. S. and Castro-Diez, Y. (2001). A study of NAO variability and its possible nonlinear influences on European surface temperature. Climate Dynamics, 17:701–15. Preisendorfer, R. W. (1988). Principal Component Analysis in Meteorology and Oceanography. New York: Elsevier. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1986). Numerical Recipes. Cambridge, UK: Cambridge University Press. Price, K. V., Storn, R. M. and Lampinen, J. A. (2005). Differential Evolution: A Practical Approach to Global Optimization. Berlin: Springer. Pyper, B. J. and Peterman, R. M. (1998). Comparison of methods to account for autocorrelation in correlation analyses of fish data. Canadian Journal of Fisheries and Aquatic Sciences, 55:2127–40. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 338 References Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press. Rattan, S. S. P. and Hsieh, W. W. (2004). Nonlinear complex principal component analysis of the tropical Pacific interannual wind variability. Geophysical Research Letters, 31(21). L21201, doi:10.1029/2004GL020446. Rattan, S. S. P. and Hsieh, W. W. (2005). Complex-valued neural networks for nonlinear complex principal component analysis. Neural Networks, 18(1):61–9. Rattan, S. S. P., Ruessink, B. G. and Hsieh, W. W. (2005). Non-linear complex principal component analysis of nearshore bathymetry. Nonlinear Processes in Geophysics, 12(5):661–70. Recknagel, F., French, M., Harkonen, P. and Yabunaka, K. (1997). Artificial neural network approach for modelling and prediction of algal blooms. Ecological Modelling, 96(1-3):11–28. Reynolds, R. W. and Smith, T. M. (1994). Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7(6):929–48. Richardson, A. J., Risien, C. and Shillington, F. A. (2003). Using self-organizing maps to identify patterns in satellite imagery. Progress in Oceanography, 59(2-3):223–39. Richaume, P., Badran, F., Crepon, M. et al. (2000). Neural network wind retrieval from ERS-1 scatterometer data. Journal of Geophysical Research, 105(C4):8737–51. Richman, M. B. (1986). Rotation of principal components. Journal of Climatology, 6:293–335. Rojas, R. (1996). Neural Networks– A Systematic Introduction. New York: Springer. Rojo-Alvarez, J. L., Martinez-Ramon, M., Figueiras-Vidal, A. R., Garcia-Armada, A. and Artes-Rodriguez, A. (2003). A robust support vector algorithm for nonparametric spectral analysis. IEEE Signal Processing Letters, 10(11):320–23. Ropelewski, C. F. and Jones, P. D. (1987). An extension of the Tahiti-Darwin Southern Oscillation Index. Monthly Weather Review, 115:2161–5. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386–408. Rosenblatt, F. (1962). Principles of Neurodynamics. New York: Spartan. Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323–6. Ruessink, B. G., van Enckevort, I. M. J. and Kuriyama, Y. (2004). Non-linear principal component analysis of nearshore bathymetry. Marine Geology, 203:185–97. Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986). Learning internal representations by error propagation. In Rumelhart, D., McClelland, J. and Group, P. R., eds., Parallel Distributed Processing, volume 1, pp. 318–62. Cambridge, MA: MIT Press. Saff, E. B. and Snider, A. D. (2003). Fundamentals of Complex Analysis with Applications to Engineering and Science. Englewood Cliffs, NJ: Prentice-Hall. Sajikumar, N. and Thandaveswara, B. S. (1999). A non-linear rainfall-runoff model using an artificial neural network. Journal of Hydrology, 216(1-2):32–55. Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2:459–73. Schiller, H. (2007). Model inversion by parameter fit using NN emulating the forward model - Evaluation of indirect measurements. Neural Networks, 20(4): 479–83. Schiller, H. and Doerffer, R. (1999). Neural network for emulation of an inverse model – operational derivation of Case II water properties from MERIS data. International Journal of Remote Sensing, 20:1735–46. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 339 Schiller, H. and Doerffer, R. (2005). Improved determination of coastal water constituent concentrations from MERIS data. IEEE Transactions on Geoscience and Remote Sensing, 43(7):1585–91. Schlink, U., Dorling, S., Pelikan, E. et al. (2003). A rigorous inter-comparison of ground-level ozone predictions. Atmospheric Environment, 37(23):3237–53. Schölkopf, B., Smola, A. and Muller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–319. Schölkopf, B., Smola, A., Williamson, R. and Bartlett, P. L. (2000). New support vector algorithms. Neural Computation, 12:1207–45. Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning). Cambridge, MA: MIT Press. Schölkopf, B., Sung, K. K., Burges, C. J. C. et al. (1997). Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45(11):2758–65. Schoof, J. T. and Pryor, S. C. (2001). Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks. International Journal of Climatology, 21(7):773–90. Shabbar, A. and Barnston, A. G. (1996). Skill of seasonal climate forecasts in Canada using canonical correlation analysis. Monthly Weather Review, 124:2370–85. Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 24:647–57. Shanno, D. F. (1978). Conjugate-gradient methods with inexact searches. Mathematics of Operations Research, 3:244–56. Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge, UK: Cambridge University Press. Simpson, J. J. and McIntire, T. J. (2001). A recurrent neural network classifier for improved retrievals of areal extent of snow cover. IEEE Transactions on Geoscience and Remote Sensing, 39(10):2135–47. Simpson, J. J., Tsou, Y. L., Schmidt, A. and Harris, A. (2005). Analysis of along track scanning radiometer-2 (ATSR-2) data for clouds, glint and sea surface temperature using neural networks. Remote Sensing of Environment, 98:152–81. Smith, T. M., Reynolds, R. W., Livezey, R. E. and Stokes, D. C. (1996). Reconstruction of historical sea surface temperatures using empirical orthogonal functions. Journal of Climate, 9(6):1403–20. Solomatine, D. P. and Dulal, K. N. (2003). Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrological Sciences Journal, 48: 399–411. Solomatine, D. P. and Xue, Y. P. (2004). M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. Journal of Hydrologic Engineering, 9(6):491–501. Sorooshian, S., Hsu, K. L., Gao, X. et al. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81(9):2035–46. Srivastava, A. N., Oza, N. C. and Stroeve, J. (2005). Virtual sensors: Using data mining techniques to efficiently estimate remote sensing spectra. IEEE Transactions on Geoscience and Remote Sensing, 43(3):590–600. Stacey, M. W., Pond, S. and LeBlond, P. H. (1986). A wind-forced Ekman spiral as a good statistical fit to low-frequency currents in a coastal strait. Science, 233:470–2. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 340 References Stogryn, A. P., Butler, C. T. and Bartolac, T. J. (1994). Ocean surface wind retrievals from Special Sensor Microwave Imager data with neural networks. Journal of Geophysical Research, 99(C1):981–4. Storn, R. and Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11:341–59. doi 10.1023/A:1008202821328. Strang, G. (2005). Linear Algebra and Its Applications. Pacific Grove, CA: Brooks Cole. Stroeve, J., Holland, M. M., Meier, W., Scambos, T. and Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34. L09501, doi:10.1029/2007GL029703. Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B. and Vandewalle, J. (2002). Least Squares Support Vector Machines. New Jersey: World Scientific. Tag, P. M., Bankert, R. L. and Brody, L. R. (2000). An AVHRR multiple cloud-type classification package. Journal of Applied Meteorology, 39(2):125–34. Taner, M. T., Berge, T., Walls, J. A. et al. (2001). Well log calibration of Kohonenclassified seismic attributes using Bayesian logic. Journal of Petroleum Geology, 24(4):405–16. Tang, B. (1995). Periods of linear development of the ENSO cycle and POP forecast experiments. Journal of Climate, 8:682–91. Tang, B., Flato, G. M. and Holloway, G. (1994). A study of Arctic sea ice and sea-level pressure using POP and neural network methods. Atmosphere-Ocean, 32:507–29. Tang, B. and Mazzoni, D. (2006). Multiclass reduced-set support vector machines. In Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), Pittsburgh, PA. New York: ACM. Tang, B. Y., Hsieh, W. W., Monahan, A. H. and Tangang, F. T. (2000). Skill comparisons between neural networks and canonical correlation analysis in predicting the equatorial Pacific sea surface temperatures. Journal of Climate, 13(1):287–93. Tang, Y. (2002). Hybrid coupled models of the tropical Pacific: I. Interannual variability. Climate Dynamics, 19:331–42. Tang, Y. and Hsieh, W. W. (2002). Hybrid coupled models of the tropical Pacific: II. ENSO prediction. Climate Dynamics, 19:343–53. Tang, Y. and Hsieh, W. W. (2003a). ENSO simulation and prediction in a hybrid coupled model with data assimilation. Journal of the Meteorological Society of Japan, 81:1–19. Tang, Y. and Hsieh, W. W. (2003b). Nonlinear modes of decadal and interannual variability of the subsurface thermal structure in the Pacific Ocean. Journal of Geophysical Research, 108(C3). 3084, doi: 10.1029/2001JC001236. Tang, Y., Hsieh, W. W., Tang, B. and Haines, K. (2001). A neural network atmospheric model for hybrid coupled modelling. Climate Dynamics, 17:445–55. Tangang, F. T., Hsieh, W. W. and Tang, B. (1997). Forecasting the equatorial Pacific sea surface temperatures by neural network models. Climate Dynamics, 13:135–47. Tangang, F. T., Hsieh, W. W. and Tang, B. (1998a). Forecasting the regional sea surface temperatures of the tropical Pacific by neural network models, with wind stress and sea level pressure as predictors. Journal of Geophysical Research, 103(C4): 7511–22. Tangang, F. T., Tang, B., Monahan, A. H. and Hsieh, W. W. (1998b). Forecasting ENSO events – a neural network-extended EOF approach. Journal of Climate, 11:29–41. Tenenbaum, J. B., de Silva, V. and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319–23. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 341 Teng, Q. B., Monahan, A. H., and Fyfe, J. C. (2004). Effects of time averaging on climate regimes. Geophysical Research Letters, 31(22). L22203, doi:10.1029/ 2004GL020840. Teschl, R. and Randeu, W. L. (2006). A neural network model for short term river flow prediction. Natural Hazards and Earth System Sciences, 6:629–35. Teschl, R., Randeu, W. L. and Teschl, F. (2007). Improving weather radar estimates of rainfall using feed-forward neural networks. Neural Networks, 20:519–27. Thiria, S., Mejia, C., Badran, F. and Crepon, M. (1993). A neural network approach for modeling nonlinear transfer functions – application for wind retrieval from spaceborne scatterometer data. Journal of Geophysical Research, 98(C12):22827–41. Thompson, D. W. J. and Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25:1297–300. Thompson, D. W. J. and Wallace, J. M. (2000). Annular modes in the extratropical circulation. Part I: Month-to-month variability. Journal of Climate, 13(5):1000–16. Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1:211–44. Tolman, H. L., Krasnopolsky, V. M. and Chalikov, D. V. (2005). Neural network approximations for nonlinear interactions in wind wave spectra: direct mapping for wind seas in deep water. Ocean Modelling, 8:252–78. Trigo, R. M. and Palutikof, J. P. (1999). Simulation of daily temperatures for climate change scenarios over Portugal: a neural network model approach. Climate Research, 13(1):45–59. Trigo, R. M. and Palutikof, J. P. (2001). Precipitation scenarios over Iberia: A comparison between direct GCM output and different downscaling techniques. Journal of Climate, 14(23):4422–46. Tripathi, S., Srinivas, V. V. and Nanjundiah, R. S. (2006). Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, 330(3-4):621–40. Troup, A. J. (1965). The ‘southern oscillation’. Quarterly Journal of the Royal Meteorological Society, 91:490–506. UNESCO (1981). The Practical Salinity Scale 1978 and the International Equation of State for Seawater 1980. Tenth Report of the Joint Panel on Oceanographic Tables and Standards. Technical Report 36, UNESCO. van den Boogaard, H. and Mynett, A. (2004). Dynamic neural networks with data assimilation. Hydrological Processes, 18:1959–66. van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated Annealing: Theory and Applications. Dordrecht: Reidel. Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Berlin: Springer Verlag. Vapnik, V. N. (1998). Statistical Learning Theory. New York: Wiley. Vecchi, G. A. and Bond, N. A. (2004). The Madden–Julian Oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophysical Research Letters, 31. L04104, doi: 10.1029/2003GL018645. Villmann, T., Merenyi, E. and Hammer, B. (2003). Neural maps in remote sensing image analysis. Neural Networks, 16(3-4):389–403. von Storch, H. (1999). On the use of ‘inflation’ in statistical downscaling. Journal of Climate, 12(12):3505–6. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 342 References von Storch, H., Bruns, T., Fischer-Bruns, I. and Hasselman, K. (1988). Principal Oscillation Pattern Analysis of the 30 to 60 day oscillation in general circulation model equatorial troposphere. Journal of Geophysical Research, 93(D9): 11021–36. von Storch, H., Burger, G., Schnur, R. and von Storch, J.-S. (1995). Principal oscillation patterns: A review. Journal of Climate, 8(3):377–400. von Storch, H. and Zwiers, F. W. (1999). Statistical Analysis in Climate Research. Cambridge, UK: Cambridge University Press. Wallace, J. M. (1972). Empirical orthogonal representation of time series in the frequency domain. Part II: Application to the study of tropical wave disturbances. Journal of Applied Meteorology, 11:893–990. Wallace, J. M. and Dickinson, R. E. (1972). Empirical orthogonal representation of time series in the frequency domain. Part I: Theoretical considerations. Journal of Applied Meteorology, 11(6):887–92. Wallace, J. M. and Gutzler, D. S. (1981). Teleconnections in the geopotential height fields during the northern hemisphere winter. Monthly Weather Review, 109:784–812. Wallace, J. M., Smith, C. and Bretherton, C. S. (1992). Singular value decomposition of wintertime sea surface temperature and 500 mb height anomalies. Journal of Climate, 5(6):561–76. Walter, A., Denhard, M. and Schonwiese, C.-D. (1998). Simulation of global and hemispheric temperature variations and signal detection studies using neural networks. Meteorologische Zeitschrift, N.F.7:171–80. Walter, A. and Schonwiese, C. D. (2002). Attribution and detection of anthropogenic climate change using a backpropagation neural network. Meteorologische Zeitschrift, 11(5):335–43. Wang, W. J., Lu, W. Z., Wang, X. K. and Leung, A. Y. T. (2003). Prediction of maximum daily ozone level using combined neural network and statistical characteristics. Environment International, 29(5):555–62. Webb, A. R. (1999). A loss function approach to model selection in nonlinear principal components. Neural Networks, 12:339–45. Weichert, A. and Bürger, G. (1998). Linear versus nonlinear techniques in downscaling. Climate Research, 10(2):83–93. Weigend, A. S. and Gershenfeld, N. A., eds., (1994). Time Series Prediction: Forecasting the Future and Understanding the Past. Santa Fe Institute Studies in the Sciences of Complexity, Proceedings vol. XV. Addison-Wesley. Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the behavioural sciences. Ph.D. thesis, Harvard University. Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON Convention Record, volume 4, pp. 96–104, New York. Wilby, R. L., Dawson, C. W. and Barrow, E. M. (2002). SDSM – a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2):147–59. Wilcox, R. R. (2004). Robust Estimation and Hypothesis Testing. Amsterdam: Elsevier. Wilks, D. S. (1995). Statistical Methods in the Atmospheric Sciences. San Diego: Academic Press. Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11):1309–13. Wilson, L. J. and Vallée, M. (2002). The Canadian Updateable Model Output Statistics (UMOS) system: Design and development tests. Weather and Forecasting, 17(2): 206–22. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 References 343 Woodruff, S. D., Slutz, R. J., Jenne, R. L. and Steurer, P. M. (1987). A comprehensive ocean-atmosphere data set. Bulletin of the American Meteorological Society, 68: 1239–50. Wu, A. and Hsieh, W. W. (2002). Nonlinear canonical correlation analysis of the tropical Pacific wind stress and sea surface temperature. Climate Dynamics, 19:713–22. doi 10.1007/s00382-002-0262-8. Wu, A. and Hsieh, W. W. (2003). Nonlinear interdecadal changes of the El Nino-Southern Oscillation. Climate Dynamics, 21:719–30. Wu, A. and Hsieh, W. W. (2004a). The nonlinear association between ENSO and the Euro-Atlantic winter sea level pressure. Climate Dynamics, 23:859–68. doi: 10.1007/s00382-004-0470-5. Wu, A. and Hsieh, W. W. (2004b). The nonlinear Northern Hemisphere atmospheric response to ENSO. Geophysical Research Letters, 31. L02203, doi:10.1029/2003GL018885. Wu, A., Hsieh, W. W. and Shabbar, A. (2005). The nonlinear patterns of North American winter temperature and precipitation associated with ENSO. Journal of Climate, 18:1736–52. Wu, A., Hsieh, W. W., Shabbar, A., Boer, G. J. and Zwiers, F. W. (2006a). The nonlinear association between the Arctic Oscillation and North American winter climate. Climate Dynamics, 26:865–79. Wu, A., Hsieh, W. W. and Tang, B. (2006b). Neural network forecasts of the tropical Pacific sea surface temperatures. Neural Networks, 19:145–54. Wu, A., Hsieh, W. W. and Zwiers, F. W. (2003). Nonlinear modes of North American winter climate variability detected from a general circulation model. Journal of Climate, 16:2325–39. Xu, J. S. (1992). On the relationship between the stratospheric Quasi-Biennial Oscillation and the tropospheric Southern Oscillation. Journal of the Atmospheric Sciences, 49(9):725–34. Xu, J.-S. and von Storch, H. (1990). Predicting the state of the Southern Oscillation using principal oscillation pattern analysis. Journal of Climate, 3:1316–29. Yacoub, M., Badran, F. and Thiria, S. (2001). A topological hierarchical clustering: Application to ocean color classification. In Artificial Neural Networks-ICANN 2001, Proceedings. Lecture Notes in Computer Science., volume 2130, pp. 492–499. Berlin: Springer. Ye, Z. and Hsieh, W. W. (2006). The influence of climate regime shift on ENSO. Climate Dynamics, 26:823–33. Yhann, S. R. and Simpson, J. J. (1995). Application of neural networks to AVHRR cloud segmentation. IEEE Transactions on Geoscience and Remote Sensing, 33(3):590–604. Yi, J. S. and Prybutok, V. R. (1996). A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environmental Pollution, 92(3):349–57. Yu, P. S., Chen, S. T. and Chang, I. F. (2006). Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328(3-4):704–16. Yu, X. Y. and Liong, S. Y. (2007). Forecasting of hydrologic time series with ridge regression in feature space. Journal of Hydrology, 332(3-4):290–302. Yuval (2000). Neural network training for prediction of climatological time series; regularized by minimization of the Generalized Cross Validation function. Monthly Weather Review, 128:1456–73. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015 344 References Yuval (2001). Enhancement and error estimation of neural network prediction of Niño 3.4 SST anomalies. Journal of Climate, 14:2150–63. Yuval and Hsieh, W. W. (2002). The impact of time-averaging on the detectability of nonlinear empirical relations. Quarterly Journal of the Royal Meteorological Society, 128:1609–22. Yuval and Hsieh, W. W. (2003). An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks. Weather and Forecasting, 18(2):303–10. Zebiak, S. E. and Cane, M. A. (1987). A model El Niño – Southern Oscillation. Monthly Weather Review, 115(10):2262–78. Zhang, C. (2005). Madden–Julian Oscillation. Reviews of Geophysics, 43. RG2003, doi:10.1029/2004RG000158. Zhang, X., Hogg, W. D. and Mekis, E. (2001). Spatial and temporal characteristics of heavy precipitation events over Canada. Journal of Climate, 14:1923–36. Zorita, E. and von Storch, H. (1999). The analog method as a simple statistical downscaling technique: Comparison with more complicated methods. Journal of Climate, 12(8):2474–89. Downloaded from https://www.cambridge.org/core. University of Warwick, on 20 May 2018 at 23:30:30, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511627217.015